
A Software Library Model for the Internet of Things
Ian C. McCormack

Department of Computer Science

University of Wisconsin-Eau Claire

Eau Claire, WI, USA

mccormic2812@uwec.edu

Abstract
Heterogeneity, resource constraints, and scalability are ob-

stacles to making the IoT approachable for non-specialist

programmers. To be successful and appealing in these envi-

ronments, library systems must be as space-efficient and flex-

ible as possible without fundamentally changing the process

of creating and maintaining shared software. Existing library

frameworks emphasize some but not all of these attributes

and rely on a monolithic model that preserves mutable state.

We propose a finer-grained approach to software libraries

that allows developers to use multiple components of a li-

brary concurrently at disjoint versions. This model defines

a library as a set of independent functions with immutable

global state to avoid maintaining distributed mutable state

in dataflow environments. Library code is stored in a data

dependency graph, which is traversed to produce a mini-

mal copy of the library containing only what is necessary

for a program. This design addresses the constraints of dis-

tributed systems and allows developers to quickly customize

dependencies for their unique deployment situations.

CCS Concepts: • Software and its engineering → Soft-
ware libraries and repositories; Domain specific lan-
guages.

Keywords: IoT, Software Library Systems, Data Dependence

Analysis, Macroprogramming Systems

ACM Reference Format:
Ian C. McCormack. 2020. A Software Library Model for the Internet

of Things. In Companion Proceedings of the 2020 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH Companion ’20), No-
vember 15–20, 2020, Virtual, USA.ACM, New York, NY, USA, 3 pages.

https://doi.org/10.1145/3426430.3428136

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SPLASH Companion ’20, November 15–20, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8179-6/20/11. . . $15.00

https://doi.org/10.1145/3426430.3428136

1 Introduction
The IoT has a staggering scale, spanning from cloud servers

to embedded "motes" with tens of kilobytes of storage [8].

IoT developers must ensure that a library is functional and
that it meets a particular network’s storage, memory, and

energy limits [8]. This diversity of constraints implies that

library maintainers will have less of an incentive to provide

support for any singular deployment scenario. Developers

may find themselves in a position where an updated library

is functional but violates the resource constraints of a deploy-

ment. To adapt quickly to these breaking changes, developers

need an efficient method for mixing and matching disjointly

versioned components of a library within a program.

Developers can unilaterally design IoT applications with

macroprogramming systems that optimally spread a single

program across a network of devices. Existing designs [10,

11, 13, 18] are somewhat modular in syntax, but they do

not specify a library system. Existing library models such as

Python’s PiP[3, 5] and JavaScript’s NPM[1, 2] are not ade-

quate for this environment because they allow mutable state

to be declared and hidden within a library, which may incur

unexpected synchronization costs in the dataflow environ-

ments commonly used to enable parallelism for large-scale

systems [6, 12]. These models also inefficiently support us-

ing disjoint versions of a library within a single program.

Non-specialist developers would benefit from a library sys-

tem that is similar to these solutions but optimized for the

orthogonal concerns of the IoT.

We propose a library syntax, storage format, and distribu-

tion mechanism for IoT macroprogramming that empowers

developers to balance functionality with compatibility with-

out challenging the fundamentals of sharing software.

2 System Design
Libraries are defined using the syntax shown in figure 1. Each

definition file begins with a header statement specifying the

library name, which is proceeded by a series of declarations

ds. Library functions are marked by the export keyword

while helper functions are declared with the func keyword.

Integers are represented by i, types by 𝜏 , identifiers by x,
and arbitrary expressions or statements by e. Exports from
a library are used via a require statement that takes the

library name l, a version identifier n, and a bracketed list of

function names f. Dependency information is embedded in

source code instead of in an external file to avoid aliasing.

28

https://doi.org/10.1145/3426430.3428136
https://doi.org/10.1145/3426430.3428136

SPLASH Companion ’20, November 15–20, 2020, Virtual, USA Ian C. McCormack

Version ranges can be applied similar to NPM’s semantic

versioning [4].

When published, libraries are translated into an abstract

syntax tree that is traversed to produce def-use chains for

each top-level declaration. The immediate dependencies for

each exported function are identified by finding the intersec-

tion of the set of const declarations and the set of undeclared
variable names within each function body. A node is created

for each function and attached to the declaration nodes of its

dependencies. This forms a set of data dependence graphs

[14, 17] where each node contains an identifier, the snippet

of code where it is declared, and a set of antidependent nodes.

Figure 2 displays a library graph in which nodes a, b, c, and
d are declared constants used in functions funcA and funcB

Library graphs are stored as JSON in a centralized reposi-

tory. When a new graph is uploaded, its nodes are compared

with all other nodes for previous versions of the library to

identify duplicates, which will not be inserted. A node is

a duplicate if there exists another node that has the same

identifier and snippet of source code. When a new node is

inserted, its list of parent nodes is reformatted into a depen-
dency set, which maps library version ranges to lists of parent

nodes. This eliminates the need for duplicating nodes for

different versions of the library. Instead of copying a node,

edges marked with new versions are added to its dependency

set. If a version has a severe error or vulnerability, it can be

removed by deleting all of its edges and unique nodes.

𝐿 ::= library 𝑙@𝑣 𝑑𝑠

𝑑𝑠 ::= • | 𝑑 𝑑𝑠

𝑑 ::= require 𝑓 + from 𝑙 [@𝑣] as 𝑥
| export 𝑓 {𝑒}
| func 𝑓 {𝑒}
| const 𝜏 𝑥 = 𝑒

𝑣 ::= 𝑛 | ˆ𝑛 | 𝑛 − 𝑛 | (< | > | ≤ | ≥) 𝑛
𝑛 ::= 𝑚.𝑚.𝑚 | latest
𝑚 ::= (𝑖 | “_”)

Figure 1. The syntax for a library definition.

When a program requires a function, the repository is

queried with the library name, version, and requested func-

tion names. If the corresponding function nodes are located,

their dependencies in the graph are traversed. When a node

is reached, its code snippet is recorded and the requested

version is used to determine which set of parents to visit. If

a node represents a require statement, traversal will con-

tinue recursively within that library’s graphs. Cycles are

avoided by assigning unique IDs to nodes and maintaining

an efficient mapping of the nodes that have already been vis-

ited. This also applies when there are multiple paths upward

through the graph, shown with nodes c, d, and funcB in fig-

ure 2. Once traversal completes at the root of each graph, the

resulting set of versioned snippets is sent to the compiler.

Figure 2. A sample library graph

3 Related Work
Northrop et al. [9] outlined several challenges for "ultra

large" scale systems, including constant evolution, incon-

sistent behavior, and heterogeneity. Motta et al. [15] echo

these concerns in their survey of IoT stakeholders and em-

phasize the importance of creating platforms that are easy to

understand, extend, and maintain. Newton and Walsh [16]

tackle the problem of heterogeneity at scale with amacropro-
gramming paradigm, in which a single program dictates the

functionality of an entire network of devices. Existing macro-

programming systems target embedded systems [11, 13] and

network switch configurations [10, 18] without including

a library system. Foster et al.’s Frenetic language [10] im-

plements a modular design with composable queries and

has a potential community of users, but it does not outline

a library system for this community. Similarly, Kothari et

al.’s Pleiades system [13] defines a program as a set of task-

oriented modules containing dependent functions and state,

but it does not support imports or exports.

Package management tools such as Python’s PiP [3] and

JavaScript’s Node Package Manager (NPM) [1] treat libraries

as inseparable with limited support for concurrent, disjoint

versions of a dependency. Methods for working with mul-

tiple versions of a package, such as Python’s virtual envi-
ronments [5] and NPM’s aliasing, require installing each

separate version in full. Common Lisp’s ASDF uses a "one

package per file" method of organization [7] that inspired

this model’s one version per function capacity.

4 Conclusion
We examined a library syntax, storage model, and distribu-

tion mechanism that is optimized for macroprogramming

systems and described how this system minimizes code, en-

forces immutable state, and provides a method for developers

to balance compatibility with functionality.

Acknowledgments
This material is based upon work supported by the National

Science Foundation under Grants No. 1646235 and 1645578.

The author thanks Dr. Robert Iannuci, Dr. Jonathan Aldrich,

and Kyle Liang for their extensive mentorship and support.

29

A Software Library Model for the Internet of Things SPLASH Companion ’20, November 15–20, 2020, Virtual, USA

References
[1] 2020. npm. https://www.npmjs.com/. [Online; accessed 20-July-2020].

[2] 2020. npm-install. https://docs.npmjs.com/cli/install. [Online; accessed
20-July-2020].

[3] 2020. pip - The Python Package Installer. https://pip.pypa.io/en/stable/.
[Online; accessed 20-July-2020].

[4] 2020. Semantic Versioning 2.0.0. https://semver.org/. [Online; accessed
12-August-2020].

[5] 2020. Virtual Environments and Packages. https://docs.python.org/3/
tutorial/venv.html. [Online; accessed 20-July-2020].

[6] Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner.

2005. The Abstract Task Graph: A Methodology for Architecture-

Independent Programming of Networked Sensor Systems. In Proceed-
ings of the 2005 Workshop on End-to-End, Sense-and-Respond Systems,
Applications and Services (Seattle, Washington) (EESR ’05). USENIX
Association, USA, 19–24.

[7] Daniel Barlow. [n.d.]. ASDF: Another System Definition Facility -

Manual for 3.3.4.

[8] C. Bormann, M. Ersue, and A. Keranen. 2014. Terminology for

Constrained-Node Networks. https://tools.ietf.org/html/rfc7228#
section-2.1

[9] Peter Feiler, Kevin Sullivan, Kurt Wallnau, Richard Gabriel, John Good-

enough, Richard Linger, Thomas Longstaff, Rick Kazman, Mark Klein,

Linda Northrop, and Douglas Schmidt. 2006. Ultra-Large-Scale Systems:
The Software Challenge of the Future. Software Engineering Institute,

Carnegie Mellon University.

[10] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-

santo, Jennifer Rexford, Alec Story, and David Walker. 2011. Frenetic:

A Network Programming Language. SIGPLAN Not. 46, 9 (Sept. 2011),
279–291. https://doi.org/10.1145/2034574.2034812

[11] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. 2003. Giotto: a time-

triggered language for embedded programming. Proc. IEEE 91, 1 (2003),

84–99. https://doi.org/10.1109/JPROC.2002.805825
[12] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004.

Advances in Dataflow Programming Languages. ACM Comput. Surv.

36, 1 (March 2004), 1–34. https://doi.org/10.1145/1013208.1013209
[13] Nupur Kothari, Ramakrishna Gummadi, Todd Millstein, and Ramesh

Govindan. 2007. Reliable and Efficient Programming Abstractions for

Wireless Sensor Networks. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (San

Diego, California, USA) (PLDI ’07). Association for Computing Machin-

ery, New York, NY, USA, 200–210. https://doi.org/10.1145/1250734.
1250757

[14] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.

1981. Dependence Graphs and Compiler Optimizations. In Proceed-
ings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Williamsburg, Virginia) (POPL ’81). Asso-
ciation for Computing Machinery, New York, NY, USA, 207–218.

https://doi.org/10.1145/567532.567555
[15] Rebeca C. Motta, Káthia M. de Oliveira, and Guilherme H. Travassos.

2018. On Challenges in Engineering IoT Software Systems. In Proceed-
ings of the XXXII Brazilian Symposium on Software Engineering (Sao

Carlos, Brazil) (SBES ’18). Association for Computing Machinery, New

York, NY, USA, 42–51. https://doi.org/10.1145/3266237.3266263
[16] Ryan Newton and Matt Welsh. 2004. Region streams: Functional

macroprogramming for sensor networks. In Proceeedings of the 1st
international workshop on Data management for sensor networks: in
conjunction with VLDB 2004. 78–87. https://doi.org/10.1145/1052199.
1052213

[17] Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill, and

Paul Stodghill. 1991. Dependence Flow Graphs: An Algebraic Ap-

proach to Program Dependencies. In Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Orlando, Florida, USA) (POPL ’91). Association for ComputingMachin-

ery, New York, NY, USA, 67–78. https://doi.org/10.1145/99583.99595
[18] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. 2012. Procera: A

Language for High-Level Reactive Network Control. In Proceedings of
the First Workshop on Hot Topics in Software Defined Networks (Helsinki,
Finland) (HotSDN ’12). Association for Computing Machinery, New

York, NY, USA, 43–48. https://doi.org/10.1145/2342441.2342451

30

https://www.npmjs.com/
https://docs.npmjs.com/cli/install
https://pip.pypa.io/en/stable/
https://semver.org/
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://tools.ietf.org/html/rfc7228#section-2.1
https://tools.ietf.org/html/rfc7228#section-2.1
https://doi.org/10.1145/2034574.2034812
https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1145/1013208.1013209
https://doi.org/10.1145/1250734.1250757
https://doi.org/10.1145/1250734.1250757
https://doi.org/10.1145/567532.567555
https://doi.org/10.1145/3266237.3266263
https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1145/1052199.1052213
https://doi.org/10.1145/99583.99595
https://doi.org/10.1145/2342441.2342451

	Abstract
	1 Introduction
	2 System Design
	3 Related Work
	4 Conclusion
	Acknowledgments
	References

