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Abstract
Heterogeneity, resource constraints, and scalability are ob-

stacles to making the IoT approachable for non-specialist

programmers. To be successful and appealing in these envi-

ronments, library systems must be as space-efficient and flex-

ible as possible without fundamentally changing the process

of creating and maintaining shared software. Existing library

frameworks emphasize some but not all of these attributes

and rely on a monolithic model that preserves mutable state.

We propose a finer-grained approach to software libraries

that allows developers to use multiple components of a li-

brary concurrently at disjoint versions. This model defines

a library as a set of independent functions with immutable

global state to avoid maintaining distributed mutable state

in dataflow environments. Library code is stored in a data

dependency graph, which is traversed to produce a mini-

mal copy of the library containing only what is necessary

for a program. This design addresses the constraints of dis-

tributed systems and allows developers to quickly customize

dependencies for their unique deployment situations.

CCS Concepts: • Software and its engineering → Soft-
ware libraries and repositories; Domain specific lan-
guages.
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1 Introduction
The IoT has a staggering scale, spanning from cloud servers

to embedded "motes" with tens of kilobytes of storage [8].

IoT developers must ensure that a library is functional and
that it meets a particular network’s storage, memory, and

energy limits [8]. This diversity of constraints implies that

library maintainers will have less of an incentive to provide

support for any singular deployment scenario. Developers

may find themselves in a position where an updated library

is functional but violates the resource constraints of a deploy-

ment. To adapt quickly to these breaking changes, developers

need an efficient method for mixing and matching disjointly

versioned components of a library within a program.

Developers can unilaterally design IoT applications with

macroprogramming systems that optimally spread a single

program across a network of devices. Existing designs [10,

11, 13, 18] are somewhat modular in syntax, but they do

not specify a library system. Existing library models such as

Python’s PiP[3, 5] and JavaScript’s NPM[1, 2] are not ade-

quate for this environment because they allow mutable state

to be declared and hidden within a library, which may incur

unexpected synchronization costs in the dataflow environ-

ments commonly used to enable parallelism for large-scale

systems [6, 12]. These models also inefficiently support us-

ing disjoint versions of a library within a single program.

Non-specialist developers would benefit from a library sys-

tem that is similar to these solutions but optimized for the

orthogonal concerns of the IoT.

We propose a library syntax, storage format, and distribu-

tion mechanism for IoT macroprogramming that empowers

developers to balance functionality with compatibility with-

out challenging the fundamentals of sharing software.

2 System Design
Libraries are defined using the syntax shown in figure 1. Each

definition file begins with a header statement specifying the

library name, which is proceeded by a series of declarations

ds. Library functions are marked by the export keyword

while helper functions are declared with the func keyword.

Integers are represented by i, types by 𝜏 , identifiers by x,
and arbitrary expressions or statements by e. Exports from
a library are used via a require statement that takes the

library name l, a version identifier n, and a bracketed list of

function names f. Dependency information is embedded in

source code instead of in an external file to avoid aliasing.
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Version ranges can be applied similar to NPM’s semantic

versioning [4].

When published, libraries are translated into an abstract

syntax tree that is traversed to produce def-use chains for

each top-level declaration. The immediate dependencies for

each exported function are identified by finding the intersec-

tion of the set of const declarations and the set of undeclared
variable names within each function body. A node is created

for each function and attached to the declaration nodes of its

dependencies. This forms a set of data dependence graphs

[14, 17] where each node contains an identifier, the snippet

of code where it is declared, and a set of antidependent nodes.

Figure 2 displays a library graph in which nodes a, b, c, and
d are declared constants used in functions funcA and funcB

Library graphs are stored as JSON in a centralized reposi-

tory. When a new graph is uploaded, its nodes are compared

with all other nodes for previous versions of the library to

identify duplicates, which will not be inserted. A node is

a duplicate if there exists another node that has the same

identifier and snippet of source code. When a new node is

inserted, its list of parent nodes is reformatted into a depen-
dency set, which maps library version ranges to lists of parent

nodes. This eliminates the need for duplicating nodes for

different versions of the library. Instead of copying a node,

edges marked with new versions are added to its dependency

set. If a version has a severe error or vulnerability, it can be

removed by deleting all of its edges and unique nodes.

𝐿 ::= library 𝑙@𝑣 𝑑𝑠

𝑑𝑠 ::= • | 𝑑 𝑑𝑠

𝑑 ::= require 𝑓 + from 𝑙 [@𝑣] as 𝑥
| export 𝑓 {𝑒}
| func 𝑓 {𝑒}
| const 𝜏 𝑥 = 𝑒

𝑣 ::= 𝑛 | ˆ𝑛 | 𝑛 − 𝑛 | (< | > | ≤ | ≥) 𝑛
𝑛 ::= 𝑚.𝑚.𝑚 | latest
𝑚 ::= (𝑖 | “_”)

Figure 1. The syntax for a library definition.

When a program requires a function, the repository is

queried with the library name, version, and requested func-

tion names. If the corresponding function nodes are located,

their dependencies in the graph are traversed. When a node

is reached, its code snippet is recorded and the requested

version is used to determine which set of parents to visit. If

a node represents a require statement, traversal will con-

tinue recursively within that library’s graphs. Cycles are

avoided by assigning unique IDs to nodes and maintaining

an efficient mapping of the nodes that have already been vis-

ited. This also applies when there are multiple paths upward

through the graph, shown with nodes c, d, and funcB in fig-

ure 2. Once traversal completes at the root of each graph, the

resulting set of versioned snippets is sent to the compiler.

Figure 2. A sample library graph

3 Related Work
Northrop et al. [9] outlined several challenges for "ultra

large" scale systems, including constant evolution, incon-

sistent behavior, and heterogeneity. Motta et al. [15] echo

these concerns in their survey of IoT stakeholders and em-

phasize the importance of creating platforms that are easy to

understand, extend, and maintain. Newton and Walsh [16]

tackle the problem of heterogeneity at scale with amacropro-
gramming paradigm, in which a single program dictates the

functionality of an entire network of devices. Existing macro-

programming systems target embedded systems [11, 13] and

network switch configurations [10, 18] without including

a library system. Foster et al.’s Frenetic language [10] im-

plements a modular design with composable queries and

has a potential community of users, but it does not outline

a library system for this community. Similarly, Kothari et

al.’s Pleiades system [13] defines a program as a set of task-

oriented modules containing dependent functions and state,

but it does not support imports or exports.

Package management tools such as Python’s PiP [3] and

JavaScript’s Node Package Manager (NPM) [1] treat libraries

as inseparable with limited support for concurrent, disjoint

versions of a dependency. Methods for working with mul-

tiple versions of a package, such as Python’s virtual envi-
ronments [5] and NPM’s aliasing, require installing each

separate version in full. Common Lisp’s ASDF uses a "one

package per file" method of organization [7] that inspired

this model’s one version per function capacity.

4 Conclusion
We examined a library syntax, storage model, and distribu-

tion mechanism that is optimized for macroprogramming

systems and described how this system minimizes code, en-

forces immutable state, and provides a method for developers

to balance compatibility with functionality.
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