
Student Design Competition: Networked Computing on the Edge
One Program to Rule the Intersection
Reese Grimsley, Edward Andert, Ian McCormack, Eve Hu, Bob Iannucci

NSF Grant: TickTalk
Award ID#:
CNS-1646235, 1645578

Abstract:
Distributed, time-sensitive applications are
challenging to design, develop, and test. A
signal-free intersection would have separate
programs for traffic controllers, vehicles, and
roadside sensors with their own independent
interfaces. We designed TickTalk (TT) Python to
enable systems-level programming and alleviate
these challenges by abstracting communication and
time-sensitive behavior to improve consistency and
reduce the developer’s workload. We implemented
these abstractions on a smart intersection application
for 1/10th scale autonomous vehicles. Our
abstractions made the application easier to manage
while increasing performance with respect to the
sense-to-actuate latency from 127ms to 85ms, at the
reasonable overhead cost of 5ms latency across the
application’s critical path.

Signal-Free Intersection
● 1/10th scale vehicles with Nvidia Jetsons

○ LIDAR for SLaM localization
○ YOLOv4 Darknet CNN on images

for object detection
● Roadside Unit plans trajectory through

intersection to improve efficiency, throughput

Future Work
● Extend to other distributed, time-sensitive

applications
○ User studies on TTPython syntax, semantics

● Dynamic mapping based on heuristics
○ Optimize metrics like latency, power-consumption

● Theoretical model for “time-governed” dataflow
● Build a community!

Conclusion
● TTPython systems-level programming for

distributed, time-sensitive applications
● Built-in abstractions for time, communication
● Improve Smart-Intersection application critical

path latency from 127 to 85 ms
TTPython Resources
Code: https://bitbucket.org/ccsg-res/ticktalkpython/src/master/

Docs: http://ccsg.ece.cmu.edu/ttpython/index.html

Contact:: ticktalk-python@lists.andrew.cmu.edu

Scheduling
Quantum (SQ)

TTPython for Distributed, Time-sensitive Programs
● Decompose programs into dataflow graphs
● Graphs built of “Scheduling Quanta” (SQs)

○ Wrap user-code with abstractions for synchronizing
input data, making communication implicit

● Map SQs to devices in the system
○ Intersection App: 1/10th scale Autonomous Vehicles (CAVs),

instrustructure sensor (IS), and Roadside Unit (RSU)

Development Challenges:
● Explicit communication in user code
● Joining sampled data from different

devices with loosely-sync’d clocks
● Ensuring timely response in spite of

network, sensor failure

Results
● TTPython helped discover subtle bugs

○ Improve application stability for longer
tests (>5min runtime)

● Improve sense-to-actuate latency
○ Average 127 ms before, 85 ms after
○ Due to TTPython’s interdevice, interprocess

communication optimizations
● Actuation deadlines hit 0.7% of the time
● 1.5-2ms overhead of input synchronization

○ Mean total overhead 5ms along critical path

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

Compile to
Graph

Map to System

CAV RSU IS

SQs compose graph
● Built-in abstractions

for time and
communication

● Synchronize inputs
using sample time

● Enforce timely behavior
with deadlines on
synchronization

● Sending along graph
arc → implicit inter-
device communication

