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A library system for ultra-large-scale IoT systems

   • that uses minimal storage, 

    • is compatible with dataflow,

    • and supports concurrent, disjoint versions.

What should be considered?

Library Users:

Library Maintainers:

Updates might be functional but 

exceed resource limits.

There is less incentive to support 

specific deployment scenarios.

Primary Goal

How should users interact?

Users should be able to mix and match disjointly versioned	

components to adapt to breaking changes by balancing	

compability with updated functionality.	

Library solutions must be storage efficient and immutable, 	

but also must address the issues of IoT developers.
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library test@1.0;	

	

const int a = 50;	

const int b = 5*a;	

const int c = 4*a + 3*b;	

const int d = 3*a + 2*b;	

	

export funcA() { return c };	

export funcB() { return c * d };

A sample library definition and its graph.

System Design Principles

A library is a versioned collection of imports, exports, and

global constants. These limits prevent mutable state from

being hidden. 

Library definitions are stored as a set of data dependence 

graphs [6-7], where each node contains an identifier, 

its code snippet, and a set of parent nodes.

Library functions are imported individually at specific versions

in a program. This queries a repository where the graph is stored.

The graph is traversed and code snippets are recorded and sent

back.

This representation increases storage efficiency by allowing  

individual functions to be extracted from a library via traversal. 

Library components can be mixed and matched at multiple 

versions by performing traversals on different versions of the 

graph.

The IoT is aimed at ultra-large scale networks [1] that include 

devices with storage capacities ranging from terabytes to 	

as little 100 kb! [2]

Mutable state requires expensive synchronization [3] in 	

parallel environments.

Scale, heterogeneity, and constraints increase opportunities

for breaking changes.

Existing library systems (PiP and NPM) are monolithic,	

and poorly support disjoint versions of the same library [4-5].
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