
A Software Library Model for the Internet of Things
Ian McCormack* • Dr. Jonathan Aldrich** Dr. Robert Iannucci**• • Kyle Liang**

A library system for ultra-large-scale IoT systems

   • that uses minimal storage, 

    • is compatible with dataflow,

    • and supports concurrent, disjoint versions.

What should be considered?

Library Users:

Library Maintainers:

Updates might be functional but 

exceed resource limits.

There is less incentive to support 

specific deployment scenarios.

Primary Goal

How should users interact?

Users should be able to mix and match disjointly versioned	

components to adapt to breaking changes by balancing	

compability with updated functionality.	

Library solutions must be storage efficient and immutable, 	

but also must address the issues of IoT developers.

References

funcB

c d

a

b

funcA

library test@1.0;	

	

const int a = 50;	

const int b = 5*a;	

const int c = 4*a + 3*b;	

const int d = 3*a + 2*b;	

	

export funcA() { return c };	

export funcB() { return c * d };

A sample library definition and its graph.

System Design Principles

A library is a versioned collection of imports, exports, and

global constants. These limits prevent mutable state from

being hidden. 

Library definitions are stored as a set of data dependence 

graphs [6-7], where each node contains an identifier, 

its code snippet, and a set of parent nodes.

Library functions are imported individually at specific versions

in a program. This queries a repository where the graph is stored.

The graph is traversed and code snippets are recorded and sent

back.

This representation increases storage efficiency by allowing  

individual functions to be extracted from a library via traversal. 

Library components can be mixed and matched at multiple 

versions by performing traversals on different versions of the 

graph.

The IoT is aimed at ultra-large scale networks [1] that include 

devices with storage capacities ranging from terabytes to 	

as little 100 kb! [2]

Mutable state requires expensive synchronization [3] in 	

parallel environments.

Scale, heterogeneity, and constraints increase opportunities

for breaking changes.

Existing library systems (PiP and NPM) are monolithic,	

and poorly support disjoint versions of the same library [4-5].

[1]   L. Northrop,  et al. 2006. Ultra-large-scale systems: The software challenge of the future. Technical Report. Carnegie-Mellon Univ 

       Pittsburgh Pa Software Engineering Inst.

[2]   C.  Bormann,  M.  Ersue,  and  A.  Keranen.  2014. Terminology for Constrained-Node Networks. 

       https://tools.ietf.org/html/rfc7228#section-2.1.

[3]   V. Gajinov et al. "Supporting stateful tasks in a dataflow graph," 2012 21st International Conference on Parallel Architectures and 

       Compilation Techniques (PACT), Minneapolis, MN, 2012, pp. 435-436.

[4]   2020. Virtual Environments and Packages. https://docs.python.org/3/tutorial/venv.html.  [Online; accessed 20-July-2020].

[5]   2020. npm-install.https://docs.npmjs.com/cli/install. [Online; accessed20-July-2020].

[6]   D. J. Kuck et al. 1981.Dependence Graphs and Compiler Optimizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT 

       Symposium on Principles of Programming Languages (POPL ’81). Association for Computing Machinery, NewYork, NY, USA, 

       207–218.https://doi.org/10.1145/567532.567555[12]

[7]   K. Pingali et al. 1991.   Dependence Flow Graphs: An Algebraic Approach to Program Dependencies. In Proceedings of the 18th 

       ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages(POPL ’91). Association for Computing Machinery,

       New York, NY, USA,67–78.https://doi.org/10.1145/99583.99595[

* University of Wisconsin-Eau Claire	

** Carnegie Mellon University 


