
One Program to
Rule the Intersection

Simplifying Development of
Distributed, Time-Sensitive Applications

Reese Grimsley, Edward Andert, Ian McCormack, Eve Hu, Bob Iannucci

Smart Intersections

● Light-free traffic control
○ Individualized routes, higher efficiency

● Distributed, time-sensitive application
● Precise timing requirements

○ Several ms of error yields catastrophe

2Source: https://safespeedllc.com/Source: ’Rush Hour’ by Black Sheep Films

1/10th CAV Smart Intersection Application

● Figure-8 intersection with signal-free traffic
control

○ 2 Cars (CAVs) with LIDAR and
cameras for SLaM, object detection

○ Roadside Unit (RSU) plans trajectories
● Development challenges

○ Timing and deadlines
○ Synchronizing sampled input streams
○ Fault tolerance
○ Explicit communication, retransmission

3

Design Principles

● Compatibility
○ TTPython

● Simplify time management at user level
○ Synchronization, deadline checking

● Failure handling/recovery
○ Plan B

● Abstract over communication
○ Generic network interface

4

TTPython
Systems-Level Programming for Distributed, Time-Sensitive Systems

5

Compile to
Graph

Map to
System

CAV

RSU

IS

Scheduling Quantum (SQ)

● Building block of dataflow graph
○ Abstractions help shift developer

focus to application specifics
● Synchronize inputs
● Runs to completion once enabled
● Arcs between SQs represent

implicit communication

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

6

Merging Sampled Data Streams
● Synchronize sampled data using time

○ Asynchronous devices → frequency, phase errors
○ Overlapping interval of data validity

7

RSU

ISCAV x2

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

Tolerate Faults with “Plan B”

● Failures happen → support alternative action
● Enforce timely action with deadlines

○ Shortcut synchronization
○ Execute “Plan B”, e.g. slam brakes

8

Deadline
Synchronization

(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

Implicit Communication

Graph arc → potential communication link
● i.e., subsequent SQs mapped to different devices

9

Device Boundaries

RSU ISCAVs 1,2

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)

CAV
Fusion

RSU
Global-
Fusion

The Improved Intersection

Simplify development by abstracting time, communication
● Focus less on distributed system, temporal issues

○ SQs handle timing, deadlines, synchronization
○ Graph encodes communication links implicitly

● Exposed subtle application bugs

10

Quantitative Improvements

11

N=3000; 6.5 minutes of continuous testing

Round Trip Latency
127 ms to 85ms

-33%

Actuation
Deadlines Hit

0.7%

Median Function Sync
Latency

1.5-2ms

Mean Overhead on
Critical Path

5ms

Future Work

● Extend to other distributed, time-sensitive applications
○ User studies

● Dynamic mapping based on heuristics
○ Optimize metrics like latency, power-consumption

● Theoretical model for “time-governed” dataflow
● Build a community!

○ Code: https://bitbucket.org/ccsg-res/ticktalkpython/src/master/
○ Docs: http://ccsg.ece.cmu.edu/ttpython/index.html
○ Contact: ticktalk-python@lists.andrew.cmu.edu

12

https://bitbucket.org/ccsg-res/ticktalkpython/src/master/
http://ccsg.ece.cmu.edu/ttpython/index.html
mailto:Ticktalk-python@lists.andrew.cmu.edu

Conclusion

● Distributed, time-sensitive applications are challenging
● TTPython framework for system-level programming

○ “Scheduling Quantum” (SQ) abstraction
■ Simplify communication and time-sensitive behavior

● Improved smart-intersection development process
○ Increased performance

■ End-to-end latency reduced from 127 ms to 85 ms
○ Reasonable overhead

■ 2 ms latency for input synchronization, 5ms along critical path

13

14

Token

Tag Value

Time
Interval Function ArgumentRecipient

Device

Temporal Context Code/System Context

Tokenization
● Token encapsulates value with

destination
○ Context within program, global

timeline

Old Content v2

15

One Program to Rule the Intersection

16

Compile

● Systems-level programming
language ‘TTPython’

● Programs decomposed into
dataflow graphs
○ Modular, flexible mapping

Map to
System

Smart Intersection Graph
● Reformulate smart intersection

as a dataflow graph
● Map SQs to devices

○ Roadside unit (RSU)
○ Vehicles (CAV) x2
○ Infrastructure Sensor (IS)

17

RSU

IS CAV2

CAV1

Old Content v1

18

Cities of the Future
● Massively distributed

cyber-physical systems
● Coordinated vehicles

○ Automobiles, drones
● Digital twins

○ Augmented and Virtual Reality

19

Smart Intersections

● Light-free traffic control
○ Individualized routes
○ Higher efficiency

● Precise timing requirements
○ Several ms of error yields catastrophe

20

*Crashing cars and
test dummies; show
on animation

Source: ’Rush Hour’ by Black Sheep FilmsSource: https://safespeedllc.com/

Distributed, Time-Sensitive Applications

● Challenging to design, test
● Unique program per device type

○ Many interfaces
● Time is awkward to program

○ Local timers and interrupts

21

Program C
~~~~~~~~
~~~~~~~~

Program B
~~~~~~~~
~~~~~~~~

Program A
~~~~~~~~
~~~~~~~~

Program C
~~~~~~~~
~~~~~~~~

Program A
~~~~~~~~
~~~~~~~~

Program A
~~~~~~~~
~~~~~~~~

Program D
~~~~~~~~
~~~~~~~~

Program D
~~~~~~~~
~~~~~~~~

Program D
~~~~~~~~
~~~~~~~~

Program B
~~~~~~~~
~~~~~~~~

Program D
~~~~~~~~
~~~~~~~~


What if we could write
One Program to Rule the Intersection?
● Coordinate cross-device,

time-sensitive actions
● Abstractions for

time, communication
● Program split into

independently runnable chunks

22

Smart
Intersection
~~~~~~~~~
~~~~~~~~~
~~~~~~~~~
~~~~~~~~~
~~~~~~~~~
~~~~~~~~~

Chunk D
~~~~~~~~

Chunk A
~~~~~~~~Chunk B

~~~~~~~~

Chunk B
~~~~~~~~

Chunk F
~~~~~~~~

Chunk F
~~~~~~~~

Chunk E
~~~~~~~~

Chunk C
~~~~~~~~

Chunk C
~~~~~~~~



TickTalk (TT) Python

● Python variant for system-level programming
● Program decomposed to dataflow graphs

○ Abstractions for communicating, synchronizing inputs with time 
○ Graph nodes contain generic or device-specific user code

23
Compile

Consider drawing graph by hand… hard to 
read and doesn’t distinguish between 
streaming/non-streaming



Intersection (2x speed)

24

https://docs.google.com/file/d/1Q-FAOkoAQW7a9LCgesmzrBHjwr9X75QL/preview


Time-Based Synchronization

● Goal: select similar data for computation 
● Time is a shared namespace for sampled data

○ Compare ‘validity intervals’ to synchronize data

25

A

B

C

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and 

Send)

Animate SQ, and maybe 
move to previous slide. 
Show concept of sync, 
forwarding



Deadlines

● Facilitate timely response
○ Inputs fail to arrive → motors fail to actuate

● Deadlines shortcut synchronization
○ Collect unmatched inputs
○ Execute “Plan B”, e.g. slam brakes

26

A

B

C

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and 

Send)

Animate SQ, and maybe 
move to previous slide. 
Show concept of sync, 
forwarding

Plan B



Communication

● Graph arcs represent communication links
○ Specify function, device to send to

● Token tags contain time and destination
○ Necessary context

27

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and 

Send)

Token

Tag Value

Time 
Interval Function ArgumentRecipient 

Device

Temporal Context Code/System Context


