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Smart Intersections

● Light-free traffic control
○ Individualized routes, higher efficiency

● Distributed, time-sensitive application
● Precise timing requirements

○ Several ms of error yields catastrophe

2Source: https://safespeedllc.com/Source: ’Rush Hour’ by Black Sheep Films



1/10th CAV Smart Intersection Application

● Figure-8 intersection with signal-free traffic 
control

○ 2 Cars (CAVs) with LIDAR and 
cameras for SLaM, object detection

○ Roadside Unit (RSU) plans trajectories
● Development challenges

○ Timing and deadlines
○ Synchronizing sampled input streams
○ Fault tolerance
○ Explicit communication, retransmission
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Design Principles 

● Compatibility
○ TTPython

● Simplify time management at user level
○ Synchronization, deadline checking

● Failure handling/recovery
○ Plan B

● Abstract over communication 
○ Generic network interface
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TTPython
Systems-Level Programming for Distributed, Time-Sensitive Systems
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Compile to 
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Scheduling Quantum (SQ)

● Building block of dataflow graph
○ Abstractions help shift developer 

focus to application specifics
● Synchronize inputs 
● Runs to completion once enabled
● Arcs between SQs represent

implicit communication

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)
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Merging Sampled Data Streams
● Synchronize sampled data using time

○ Asynchronous devices → frequency, phase errors
○ Overlapping interval of data validity
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Tolerate Faults with “Plan B”

● Failures happen → support alternative action
● Enforce timely action with deadlines

○ Shortcut synchronization
○ Execute “Plan B”, e.g. slam brakes
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Deadline
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Implicit Communication 

Graph arc → potential communication link
● i.e., subsequent SQs mapped to different devices
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Device Boundaries

RSU ISCAVs 1,2

Synchronization
(Time, not Data)

Computation
(Data, not Time)

Forwarding
(Encapsulate and Send)
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The Improved Intersection

Simplify development by abstracting time, communication 
● Focus less on distributed system, temporal issues

○ SQs handle timing, deadlines, synchronization
○ Graph encodes communication links implicitly 

● Exposed subtle application bugs
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Quantitative Improvements
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N=3000; 6.5 minutes of continuous testing

Round Trip Latency
127 ms to 85ms 

-33%

Actuation
Deadlines Hit

0.7%

Median Function Sync 
Latency

1.5-2ms

Mean Overhead on 
Critical Path

5ms



Future Work

● Extend to other distributed, time-sensitive applications
○ User studies

● Dynamic mapping based on heuristics
○ Optimize metrics like latency, power-consumption

● Theoretical model for “time-governed” dataflow
● Build a community!

○ Code: https://bitbucket.org/ccsg-res/ticktalkpython/src/master/
○ Docs: http://ccsg.ece.cmu.edu/ttpython/index.html 
○ Contact: ticktalk-python@lists.andrew.cmu.edu 
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https://bitbucket.org/ccsg-res/ticktalkpython/src/master/
http://ccsg.ece.cmu.edu/ttpython/index.html
mailto:Ticktalk-python@lists.andrew.cmu.edu


Conclusion 

● Distributed, time-sensitive applications are challenging
● TTPython framework for system-level programming

○ “Scheduling Quantum” (SQ) abstraction
■ Simplify communication and time-sensitive behavior

● Improved smart-intersection development process
○ Increased performance 

■ End-to-end latency reduced from 127 ms to 85 ms
○ Reasonable overhead 

■ 2 ms latency for input synchronization, 5ms along critical path

13



14

Token

Tag Value

Time 
Interval Function ArgumentRecipient 

Device

Temporal Context Code/System Context

Tokenization
● Token encapsulates value with 

destination
○ Context within program, global 

timeline



Old Content v2
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One Program to Rule the Intersection
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Compile

● Systems-level programming  
language ‘TTPython’

● Programs decomposed into 
dataflow graphs
○ Modular, flexible mapping

Map to 
System



Smart Intersection Graph
● Reformulate smart intersection 

as a dataflow graph
● Map SQs to devices

○ Roadside unit (RSU)
○ Vehicles (CAV) x2
○ Infrastructure Sensor (IS)
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RSU

IS CAV2

CAV1



Old Content v1
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Cities of the Future
● Massively distributed 

cyber-physical systems
● Coordinated vehicles

○ Automobiles, drones 
● Digital twins 

○ Augmented and Virtual Reality
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Smart Intersections

● Light-free traffic control
○ Individualized routes
○ Higher efficiency

● Precise timing requirements
○ Several ms of error yields catastrophe
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*Crashing cars and 
test dummies; show 
on animation

Source: ’Rush Hour’ by Black Sheep FilmsSource: https://safespeedllc.com/



Distributed, Time-Sensitive Applications

● Challenging to design, test
● Unique program per device type

○ Many interfaces
● Time is awkward to program 

○ Local timers and interrupts
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What if we could write 
One Program to Rule the Intersection?
● Coordinate cross-device, 

time-sensitive actions
● Abstractions for 

time, communication
● Program split into 

independently runnable chunks
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TickTalk (TT) Python

● Python variant for system-level programming
● Program decomposed to dataflow graphs

○ Abstractions for communicating, synchronizing inputs with time 
○ Graph nodes contain generic or device-specific user code
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Compile

Consider drawing graph by hand… hard to 
read and doesn’t distinguish between 
streaming/non-streaming



Intersection (2x speed)
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https://docs.google.com/file/d/1Q-FAOkoAQW7a9LCgesmzrBHjwr9X75QL/preview


Time-Based Synchronization

● Goal: select similar data for computation 
● Time is a shared namespace for sampled data

○ Compare ‘validity intervals’ to synchronize data
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Deadlines

● Facilitate timely response
○ Inputs fail to arrive → motors fail to actuate

● Deadlines shortcut synchronization
○ Collect unmatched inputs
○ Execute “Plan B”, e.g. slam brakes
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Communication

● Graph arcs represent communication links
○ Specify function, device to send to

● Token tags contain time and destination
○ Necessary context
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